
Counterexample-Guided Abstraction Refinement for PLCs

Sebastian Biallas, Jörg Brauer and Stefan Kowalewski
Embedded Software Laboratory

RWTH Aachen University
lastname@embedded.rwth-aachen.de

Abstract

This paper presents a method for model checking pro-
grams for programmable logic controllers (PLCs) using
the counterexample-guided abstraction refinement (CE-
GAR) approach. The technique is tailored to this specific
hardware platform by accounting for the cyclic scanning
mode that is symptomatic to PLCs. In particular, the hard-
ware model poses the need for on-the-fly abstraction re-
finement in order to guarantee a deterministic control flow.
It also allows to treat refinement phases triggered by input
and global variables differently, leading to a more effec-
tive implementation. The effectiveness of this approach
is shown in a case study, which highlights the verification
process for function blocks that implement a specification
provided by the industrial consortium PLCopen.

1 Introduction

Programmable logic controllers (PLCs) are often used to
control safety-critical systems, for which formal verifica-
tion is desirable, if not recommended [17]. Model check-
ing [9] is one particular technique to prove correctness of
software written for PLCs. The execution of programs on
PLCs follows the so-called cyclic scanning mode, which
consists of sensing inputs, processing data, and writing
outputs. Each of these steps is executed atomically. A
model checker then has to simulate the execution cycle
for all possible combinations of input values. Since out-
puts become visible only at the end of a cycle, internal
states within a cycle are not relevant to verification of
input-output relations [30].

Programs for PLCs typically depend on several inputs,
hence, verification using explicit-state model checking is
susceptible to state explosion, since state spaces grow ex-
ponentially in the number of inputs. Even small programs
can easily lead to state spaces consisting of hundreds
of millions of states, which is a major obstacle for the
applicability of model checking to real-world programs.

1.1 Approach

To remedy this problem, we propose to use
counterexample-guided abstraction refinement (CE-
GAR) for ACTL model checking, a technique that
has successfully been integrated into several model
checkers before [8]. The key idea in CEGAR is to start
the verification process on a coarse abstraction of the
program semantics. If the specification is satisfied on
the abstract semantics, it is also valid in the concrete
model. In case the specification is violated, this may be
due to abstraction, which manifests itself in a spurious
counterexample. In this case, the abstraction is refined in
order to obtain a stronger semantics which disallows the
behavior that led to the spurious counterexample trace.

Traditional CEGAR techniques, however, allow for
nondeterministic control flow, which is not possible for
PLCs due to the atomic simulation of a cycle during state
space generation. Thus, CEGAR for PLCs requires tech-
niques different from traditional CEGAR approaches as
implemented in tools such as SLAM [1] or BLAST [15].

Whereas the refinement step is usually triggered
through a spurious counterexample, our method refines
the abstraction on-the-fly if atomic propositions cannot
be assigned a truth-value during the simulation of a cycle.
Further, refinement is triggered to guarantee a determin-
istic control flow. Based on the scopes of variables, the
approach provides two different refinement methods: In
case that input variables require refinement, only the cur-
rently processed cycle needs to be reanalyzed using the
refined semantics. States that evolved from other input
combinations are not affected by this refinement step.
This is not so for variables that endure cycles, called
global variables in this paper1. Thus, if global variables
trigger the refinement process, the entire state space of
the program has to be rebuilt, based on globally refined
constraints, so-called lemmas.

1Note that the term global does not refer to the scope of a variable
in our description, but to its lifetime.



1 VAR_INPUT input0 , input1: BYTE; END_VAR
2 VAR var0: BYTE; END_VAR
3 VAR_OUTPUT output0: BYTE; END_VAR
4 LD input0
5 ADD 50
6 GT 100
7 JMPC lbl
8 LD input1
9 ST var0

10 RET
11 lbl: LD var0
12 ST output0
13 RET

Figure 1: Example program

1.2 Contributions
Overall, we make the following contributions:

1. We describe a symbolic encoding for arithmetic of
programs written in Instruction List (IL) that is used
to guide the refinement process. Constraint solv-
ing over intervals and bit-vectors is used during the
refinement itself.

2. We detail a CEGAR-algorithm that is optimized
for refinements based on input and global variables,
and discuss its implementation in the [MC]SQUARE
model checker [29, 30].

3. We show the effectiveness of our method by verify-
ing two function blocks proposed by the industrial
consortium PLCopen [31]. Using CEGAR, each of
these blocks could be verified on a standard desktop
computer, requiring less than 2 minutes per block.

2 Worked Example

We motivate our approach with the example program
shown in Fig. 1, which is used throughout the paper. The
program has two input variables, a global variable, and an
output variable, all of type BYTE (range 0–255). In each
cycle, the following operation is performed:

The input variable input0 is loaded into the accumula-
tor, 50 is added and the result is compared to 100 (lines
4–6). If the result is not greater than 100, the input vari-
able input1 is copied into the global variable var0 (lines
8–9). Otherwise, the global variable var0 is copied into
the output variable output0 (lines 11–12).

To verify this program using naı̈ve methods, a model
checker would start by enumerating all possible inputs,
creating all successor states. For all successor states this
step would be repeated to obtain a state space which can
be examined by a model checker. In the example, this
approach would create 216 = 65,536 successors for each

state, resulting in 232 = 4,294,967,296 states in total.
This is the well-known state explosion, which makes this
procedure infeasible for larger programs. To make formal
verification possible, abstract states have to be introduced,
which represent a (possibly huge) number of concrete
states. In this program, for example, it is only relevant
whether input0 lies in the interval [0, 50] or in [51, 255].
If we determine that the value lies in either interval, we
can decide the conditional jump in line 14 without know-
ing the concrete value of the accumulator.

To verify programs using this method, the crucial step
is to find abstract values such that the behavior of the
program is not altered or only altered where it is irrele-
vant for the validity of the specification. To find abstract
values matching these criteria, our approach starts with
the most general abstract states representing all possible
values. These are then successively refined in order to
retain program behavior and the validity of the formula.

In the example, we would assume the abstract value
[0, 255] for both inputs and then start simulating the cy-
cle. After loading input0 and adding 50, the accumulator
holds [50, 305]. Comparing the latter interval to 100 re-
sults in {true, false}, because the comparison could yield
either true or false depending on the actual concretiza-
tion. The next operation is a conditional jump, for which
the accumulator has to hold a concrete value, since sim-
ulating a PLC program simultaneously in two different
places is not possible. Thus, the conditional jump poses a
restriction on the abstract value in the accumulator.

We call such a restriction a constraint. Our key idea is
to use this constraint on the abstract value in the accumu-
lator in line 14 to obtain a constraint on the input variables
that caused the conditional jump to be ambiguous. The
accumulator contains {true, false}, which is the result
of the comparison of [50, 305] with 100. It is therefore
sufficient to constrain [50, 305] to be either greater than
100 or less-equal than 100. The interval [50, 305] was
the result of the addition of [0, 255] to 50, so we can con-
strain [0, 255] to be either greater than 50 or less-equal
than 50. The interval [0, 255] comes straight from the
variable input0, so we can now derive that input0 has
to be split into the intervals [0, 50] and [51, 255]. This
constraint resolving process will later be performed using
symbolic information.

Here, the constraint on the accumulator for the con-
ditional jump could be resolved to a constraint on an
input variable. By refining the input variable, the prob-
lematic values are avoided in subsequent executions after
restarting the cycle. Since the values of input variables
are assigned independently of previous states, the refine-
ment does not affect already created states. Thus, all
constraints on input variables can be resolved by a local
restart. The situation is different when it comes to con-
straints on global variables such as var0. Here, splitting

2



the abstract value might add new program behavior be-
cause it was calculated in a previous state. How this is
resolved is detailed in Sect. 5.2.

In the next section we briefly introduce the notion of
abstract simulation. After that, the constraint solver is
detailed which is used for the constraint transformation
process. We then formally present the refinement process
for input and global variables.

3 Abstract Domains

For abstract interpretation of PLC programs we imple-
mented transfer functions using the interval domain [10]
and the bitwise domain [26]. The interval domain com-
bines a set of consecutive integers by storing its upper and
lower bounds. While the interval domain is very exact in
expressing integer arithmetic as arithmetic on the interval
bounds, bit-level operations usually yield inexact intervals
containing all values with modified bits. The bitwise do-
main, on the other hand, represents values as bit-vectors
where each bit can either be 0, 1, or unknown. Here, bit-
level operations are expressed with maximum accuracy
using ternary logic, but arithmetic operations usually re-
sult in bits becoming unknown. The implementation of
transfer functions for this domain has been well-studied
in the past [28, 6].

Both abstract domains are combined using the reduced
product [10] in a way similar to [28, 6]. This construction
ensures taking the more exact description in either of both
domains, which is especially important when evaluating
truth values of atomic propositions. The combination of
both domains allows for precise abstract interpretation of
PLC programs as it reflects the most important integer
arithmetic and bit-level operations.

4 Constraint Solver

We will first introduce constraints on abstract values,
which are then extended to constraints on symbolic ex-
pressions. The constraint solver will be used to trans-
form constraints on symbolic expressions into (somewhat
equivalent) constraints on variables containing abstract
values. In the next section, the constraint solver will be
used for our CEGAR approach to select variables for
refinement.

4.1 Constraints on Abstract Values
A constraint is a condition f on an abstract value v, de-
noted csf (v). Such a constraint is fulfilled if the set of
concrete values that v represents is consistent under the
condition defined by f . We introduce the following con-
straints:

• The single value constraint cssing(v) is consistent if
v represents only a single concrete value.

• Comparison constraints cs./c(v) for some relational
operation ./ ∈ {=, 6=, <,≤, >,≥} and a constant
c are consistent if for all x, y ∈ v the condition
x ./ c ⇐⇒ y ./ c holds.

• The bit mask constraint cs& c(v) is consistent if for
all x, y ∈ v: x& c = y& c, where & is the bitwise
AND operation.

A constraint is a restriction on how many concrete val-
ues an abstract value can represent at most without getting
inconsistent. Concrete values are trivially consistent un-
der all constraints (and, vice versa, all constraints can
be made consistent by splitting an abstract value into
concrete values).

Given a constraint and a variable, we can easily assign
abstract values to the variable fulfilling the constraint.
Usually, we want these abstract values to cover as many
concrete values as possible. This is done using a splitter.
For a variable v with domain d and a constraint csf (v), the
splitter enumerates abstract values a1, . . . , an such that⋃̇n

i=1ai = d, ai is consistent under csf (d) for 1 ≤ i ≤ n,
and n is minimal. To illustrate, consider a variable v
of type BYTE and the constraint cs>100(v). In this case,
the splitter would generate the consistent abstract values
[0, 100] and [101, 255].

Once we have derived a constraint on a variable, the
variable can easily (and efficiently) made consistent by
a splitter. The interesting part here is how constraints
on arbitrary expressions can be made consistent. In our
example, this step was the transformation of the single
value constraint to the compare constraint on the vari-
able input0. To formalize this process of resolving con-
straints, we extend the constraints to expressions of ab-
stract values, written csf (expr).

4.2 Constraints on Expressions
To formalize constraints on expressions, we introduce a
formal model for representing IL programs. During simu-
lation, the program is written into a symbolic form which
explicitly reflects all operations on the accumulator and
the variables. For the symbolic representation we use a
static single assignment (SSA) form [11]. Each left-hand
side of an assignment is either the accumulator or a vari-
able. Each right-hand side is either (1) a concrete value
(i. e., a constant literal or a variable containing a concrete
value), (2) a variable containing an abstract value, (3) a
unary operation (complement, negation) on an operand,
(4) a data type cast un() or sn() of an operand, where n
is the number bits and u (s) signals zero (sign) extension,
or (5) an arithmetic or logical operation on two operands.

3



program symbolic form abstract value

LD input0 acc(0) := input0
(0) [0, 255]

ADD 50 acc(1) := acc(0) + 50 [50, 305]
GT 100 acc(2) := acc(1) > 100 {true, false}
JMPC label guard(cssing(acc

(2)))
..

Figure 2: Program fragment in SSA form

In case an expression results in a concrete value during
simulation, we discard the symbolic information and use
the concrete value as a right-hand side. This prunes un-
necessary information and ensures that all non-constant
expressions are composed of at least one variable that can
be refined, which guarantees convergence of our refine-
ment loop.

Figure 2 shows the symbolic and abstract values of the
accumulator for the first instructions of the example pro-
gram (cf. Fig. 1). The transformation of the load, add, and
compare instructions into the SSA form is straightforward.
Since all calculations with the accumulator are performed
over (almost) unbounded integers, we defer all type cast-
ing and overflow handling to the store instructions. To
decide the conditional jump, we require a concrete value
in the accumulator. Therefore, guard nodes are added,
which contain the appropriate constraints. If these con-
straints are inconsistent, the constraint solver described in
the next section is used to find refinements of variables.

Note that the rewriting is done during the simulation,
and hence, all loops are automatically unrolled. Since
PLCs have real-time behavior, all cycles have to terminate
after a short time, which guarantees bounded size of these
symbolic expressions.

The variable constraints from the last section are now
extended to expression constraints on SSA expressions. In
the next section, we examine how expression constraints
such as cssing(acc(2)) is transformed.

4.3 Transforming Constraints
If the validity of an expression constraint csf2(e2) implies
the validity of csf1(e1), we write csf1(e1) ` csf2(e2).
To illustrate this, consider the single-value constraint
cssing(acc

(2)). From this constraint, the solver can derive
a constraint on input0 with the following steps:

cssing(acc
(2)) ` cssing(acc

(1) > 100) (1)

` cs>100(acc
(1)) (2)

` cs>100(acc
(0) + 50) (3)

` cs>100−50(acc
(0)) (4)

` cs>50(input0
(0)) (5)

In steps (1), (3) and (5), the left-hand side of an SSA ex-
pression is replaced by its corresponding right-hand side
definition. Step (2) transforms the single-value constraint
into an equivalent compare constraint. In step (4), a com-
pare constraint is translated to resolve the addition with
the constant. This result allows to fulfill the single-value
constraint cssing(acc(2)) by refining input0 into proper
abstract values.

Formally, the steps of the constraint solver are defined
inductively on the SSA expressions. In the following, f
is an arbitrary constraint condition, e1 and e2 are (non-
constant) operands, c is a constant, 	 is a unary operation
and � is a binary operation. Relational operations are
denoted by the symbol ./ ∈ {=, 6=, <,≤, >,≥}.

For an SSA expression l := e1 and a constraint csf (l),
we can always apply the transformation csf (l) ` csf (e1).
A constraint on a variable terminates the resolving pro-
cess, whereas constraints on constants do not occur, since
constants are trivially consistent under all constraints. The
remaining possibilities for SSA right-hand sides are unary
operations, binary operations and data type casts. For a
unary operation the transformation is defined as follows:

• A complement operation is absorbed by a bit-mask
constraint cs&m(¬e1) ` cs&m(e1).

• A compare constraint on a negation cs./c(−e1)
is resolved by cs./c(−e1) ` cs./−c(e1), where
(=, 6=, <,≤, >,≥) = (=, 6=,≥, >,≤, <).

• All other constraints on unary operations are re-
solved as single value constraints csf (	e1) `
cssing(e1).

For a binary operation the transformation is defined as
follows:

• A constraint on two non-constant expressions is re-
solved as a single value constraint on one expression
csf (e1 � e2) ` cssing(e1). This other expression is
then resolved in the next refinement step.

• For all compare operations ./ we resolve
cssing(e1 ./ c) ` cs./c(e1).

• Addition and subtraction in compare constraints
are resolved by the translations cs./c1(e1 + c2) `
cs./(c1−c2)(e1), cs./c1(e1 − c2) ` cs./(c1+c2)(e1),
and cs./c1(c2 − e1) ` cs./(c1−c2)(−e1).

• Bitwise operation are resolved using the bit mask
constraint not presented here.

• All other constraints on binary operations are re-
solved as single-value constraints on csf (e1 � c) `
cssing(e1).

4



For data type casts the transformation is defined as
constraints on the data type bounds. This is not presented
in this paper.

Since each instruction adds at most one SSA expres-
sion, the constraint solver can resolve each constraint in
at mostO(n) steps, where n is the number of instructions
executed in the cycle. This linear complexity is impor-
tant for our algorithms, because the constraint solver is
called for all necessary refinements, as detailed in the next
section.

5 Refinements

First, we introduce the formal model that we use to ver-
ify PLC programs. A state consists of input valuations,
output valuations, and global variables of the PLC pro-
gram at the end of a cycle. In particular, a state specifies
the relation between inputs and outputs (and additionally,
global variables). While the symbolic SSA representation
is used during the simulation of the PLC cycle, we only
store the abstract values when saving the actual PLCs
states. This means we lose the symbolic descriptions of
dependencies between variables, but gain a compact rep-
resentation of the states. Storing only abstract values also
prevents unbounded growth of the symbolic representa-
tion, and thus, guarantees convergence of the verification
process.

For each state we determine its successors states. The
successors of a state are the states reachable by assuming
new input values and simulating one cycle. Starting from
the initial state of the PLC we obtain a Kripke structure
by generating all reachable states [30]. Note that inter-
mediate states during simulation of a cycle are not stored,
and thus, do not directly affect the verification results.
This allows the program to temporarily take forbidden
states that do not influence the outside world. We exploit
this unique behavior to develop two different refinement
methods.

As we have seen before, the enumeration of all input
values easily yields an explosion of the number of states.
To tackle this problem, a state consists of a set of abstract
values representing a set of concrete values in variables.
This way, macro states are created which combine a num-
ber of concrete states and so reduce the overall size of the
state space.

Our approach for finding this abstraction differs from
existing techniques in that it is not solely based on ana-
lyzing counterexamples. We especially do not want to
introduce nondeterministic control flow while simulating
a cycle, which is necessary to prevent the visibility of
intermediate states. Instead we track abstract values to
the source that generated their value, which is at least one
nondeterministic variable — usually an input variable.
Splitting the contents of such a variables into smaller ab-

stract values creates separate states, and thus, eliminates
the problematic cases.

For the refinement, our method combines two different
approaches, depending on whether a local or a global
variable has to be refined. Both kinds of refinement are
initiated by inconsistent constraints. During simulation,
the following situations might occur that require the re-
finement of an abstract value, and thus, introduce new
constraints:

• As we have seen, the control flow has to be determin-
istic while simulating a cycle. Hence, all conditional
instructions (JMPC, CALC, RETC) demand a concrete
value in the accumulator.

• Some hardware function blocks (such as timers) re-
quire concrete input values for their operation.

• After simulating a cycle, the truth valuations of
atomic propositions are determined. The values of
the atomic propositions have to be consistent, so they
are guarded with appropriate constraints.

• Converting abstract integers into non-integer types
(such as floats, strings, etc.) is guarded by single
value constraints.

In the first step we will explain how we implemented
the refinement of local variables.

5.1 Refinement of Local Variables
Throughout this section, we will assume that all con-
straints can be fulfilled by refining local variables only
(i. e., the refinement algorithm does not have to refine
values stored in predecessor states). This is achieved by
allowing only concrete values in global variables at the
start and the end of each cycle, which is equivalent to
adding guards with a single-value constraint to all global
variables at the end of a cycle.

Since we do not allow abstract values in the state space
in this first step, we do not add additional behavior to the
program, and hence, will not find spurious counterexam-
ples. We will see that refinement of local variables is a
powerful abstraction of the state space due to the huge
number of hidden or combined input values. Our refine-
ment algorithm implements the classical the refinement
loop initially described by Kurshan [20], which is embed-
ded into the generation of successor states. It performs
the following steps:

1. We store the splitters used for the refinements on a
stack. In the first step, a splitter pushed onto the stack
that assigns the most broad abstract value (bottom
element) of the domain to all input variables.

5



2. The splitter on top of the stack is used to assign
abstract values to the input variables.

3. A cycle of the PLC is simulated. If one of the above
mentioned situations occurs, where the simulation
cannot proceed, the constraint solver is used to find a
new splitter, which is then put on the stack and step
2 is repeated.

4. The atomic propositions are evaluated. If a truth
value cannot be determined, again the constraint
solver is used to find a new splitter, which is put on
the stack and step 2 is repeated.

5. The newly created successor state is stored in the
state space.

6. The splitter on top of the stack is advanced to its
next refinement. If the splitter has already assigned
all values of the domain, it is removed from the
stack. If the stack is empty all successors are created.
Otherwise repeat with step 2.

Using a stack for the splitters ensures that all new re-
finements are based on and only applied to current input
values. This means that the efficiency of this approach
is highly dependent on the order in which variables are
refined. Since variables are typically referenced in the or-
der of their importance for the control flow in real-world
programs, the refinements picked by of our approach are
usually quite good. In the next section this method is
extended to global variables.

5.2 Refinement of Global Variables
We will now relax the restriction of refining input vari-
ables only and allow storing of abstract values in global
variables. Since global variables might contain abstract
values calculated in previous states, refinement of global
variables can create new behavior, i. e., transitions which
are not possible in the concrete model. Take, e.g., two
variables which contain abstract values, but their concrete
value is always identical in the concrete program seman-
tics. In the example program, this is the case for the
variables var0 and outputp0 if input0 is greater than
50.

Refining such variables in the abstract model might re-
sult in different values, because the symbolic information
between the dependency of these variables is lost. But, if
an ACTL formula is valid in such an abstract model with
added behavior, it is also valid in the concrete model [8].
Otherwise, the formula is violated and we obtain a coun-
terexample. If we had to refine global variables, new
behavior was added to the abstract model and counterex-
amples are not necessarily possible in the concrete model.
Such counterexamples are called spurious. To verify that

a counterexample is not spurious, we rebuild the state
space based on a refined semantics.

This approach is depicted in Fig. 3. The first row shows
the first iteration of the state space for verifying the for-
mula AG output0 < 25 (irrelevant states are omitted).
In the last state, the truth value of output0 < 50 is not
consistent because output0 lies in the interval [0, 255],
so the state has to be refined accordingly. This is per-
formed using the constraint solver, which finds the con-
straint cs>25(var0), because if input0 lies in the interval
[51, 255], var0 is copied into output0. Since refining the
global variable var0 possibly creates new behavior, we
save the constraint cs>25(var0) as a so-called lemma for
further refinement.

The state space, where the state was split to make the
atomic propositions consistent, is shown in the second
row. Since output0 > 25 in the lower state, we have a
possible counterexample trace here. However, due to the
over-approximation, we have to verify that this counterex-
ample is also valid under concrete semantics.

To achieve this, we rebuild the state space while obey-
ing all lemmas we found, thus avoiding the addition of
new behavior to the state space. Therefore, new guards for
all variables are added to the end of the program according
to their lemmas. The idea is that at the end of the simula-
tion of each cycle — before the state is finally stored —
we still have the symbolic information for global variables
written in this cycle. Via this guards, the constraint solver
either obtains a crucial refinement of an input variable,
thus resolving the over-approximation in this state, or it
obtains a new lemma, which might be needed in a further
refinement/rebuild step.

The final result of the state space obeying cs>25(var0)
is shown in the third row of Fig. 3. Here, all additional
behavior was removed and we can deduce that the coun-
terexample trace is a real counterexample for the formula
AG output0 < 25.

6 Case Studies

We have implemented the techniques described in this pa-
per in the model checker [MC]SQUARE [29, 30]. To show
the effectiveness of CEGAR when applied to the specific
task of PLC verification, we checked several functional
and non-functional requirements on a number of function
blocks proposed by the PLCopen consortium [25]. These
implementations were kindly provided by Soliman and
Frey [31].

This section highlights the results for two specific
blocks that implement emergency stop (199 instructions)
and guard locking (306 instructions), two highly safety-
critical tasks. These functions blocks were implemented
as state machines according to the PLCopen specification
using Boolean variables Si to indicate their current states.

6



input0 = [0, 0]

input1 = [0, 0]

var0 = [0, 0]

output0 = [0, 0]

input0 = [0, 50]

input1 = [0, 255]

var0 = [0, 255]

output0 = [0, 0]

input0 = [51, 255]

input1 = [0, 255]

var0 = [0, 255]

output0 = [0, 255]

?

input0 = [0, 0]

input1 = [0, 0]

var0 = [0, 0]

output0 = [0, 0]

input0 = [0, 50]

input1 = [0, 255]

var0 = [0, 255]

output0 = [0, 0]

input0 = [51, 255]

input1 = [0, 255]

var0 = [0, 24]

output0 = [0, 24]

input0 = [51, 255]

input1 = [0, 255]

var0 = [25, 255]

output0 = [25, 255]

X

?

input0 = [0, 0]

input1 = [0, 0]

var0 = [0, 0]

output0 = [0, 0]

input0 = [0, 50]

input1 = [0, 24]

var0 = [0, 24]

output0 = [0, 0]

input0 = [51, 255]

input1 = [0, 255]

var0 = [0, 24]

output0 = [0, 24]

input0 = [0, 50]

input1 = [25, 255]

var0 = [25, 255]

output0 = [0, 0]

input0 = [51, 255]

input1 = [0, 255]

var0 = [25, 255]

output0 = [25, 255]

X

 

Figure 3: Refinement of state space for verifying AG output0 < 25

In the implementations, states could be instable or skipped
in certain transitions. A typical formula to verify correct
transitions from state S1 is AG (S1 =⇒ AX (S1 | S2)).
Our case study, however, focuses on the effectiveness on
generating the state space for different function blocks
and not on the actual verification process.

Verifying emergency stop, a function block that de-
pends on five Boolean input variables, is easily possibly
with [MC]SQUARE without CEGAR. However, even for
this program CEGAR proves to be effective, reducing
the number of stored states from 134 to 44. Enabling
global refinement does not affect the size of the state
space at all. For the guard locking implementation, the
number of created states was reduced from 199,724,033
to 3,155,467 using local refinement. Further, the runtime
was reduced from approximately 100 minutes to 326 sec-
onds. By also enabling global refinement, the runtime
was further reduced to 99 seconds, eventually storing only
75,203 states, which highlights the effectiveness of this
technique. Using CEGAR, the verification process can be
run on a standard desktop computer, which was not possi-
ble for larger programs due to the memory requirements.

We have observed comparable reductions for other

function block implementations. Space constraints, how-
ever, prevent us from presenting these results here.

7 Related Work

Our approach is related to techniques from three fields
of research, namely abstraction and refinement in model
checking, the verification of software for PLCs, and ab-
stract interpretation. These relations are discussed in the
remainder of this section.

Abstract Interpretation

The methodologies used to represent an abstract program
semantics date back until the early days of abstract in-
terpretation [10]. In particular, intervals were the first
numerical abstract domain used in program analysis [10].
However, it took several decades until it was observed
that combining bit- and word-length intervals using the re-
duced product operator allows to accurately reason about
bit-manipulating programs [6, 27, 28]. In contrast to our
work, these approaches do not apply any refinement to
abstract descriptions.

7



Program # Inputs Options used States stored States created Size [MB] Time [s]

EmergencyStop 5
None 134 4,289 16 0.56
Only Inputs 44 307 15 0.20
All Variables 44 324 15 0.25

GuardLocking 8
None 780,172 199,724,033 1,704 5,633
Only Inputs 132,242 3,155,467 351 326
All Variables 75,203 1,098,220 163 99

Figure 4: Results for verifying PLCopen function blocks

Abstraction and Refinement

The idea of refining abstract representions of states in
a loop based on encountered over-approximations was
first formulated by Kurshan [20]. His observation led
to the development of techniques for automated predi-
cate abstraction [13] and the well-known CEGAR-loop
[8]. These techniques have found wide application in
model checking in different contexts. For instance, Ball
et al. [1] apply predicate abstraction and automated ab-
straction refinement to C code translated into Boolean
programs [2]. In contrast, Henzinger et al. [15] propose
a lazy abstraction scheme that refines only parts of the
predicates in the program. Our refinement step for input
variables can be seen as a simplified adaptation of their
method. Furthermore, the abstraction-refinement scheme
has found its way into all areas of model checking, also
including bounded model checking [4] using interpolants
[12]. Compared to our method, the main difference of ex-
isting techniques is that they operate on a general purpose
abstraction of the program, whereas our method exploits
knowledge about the underlying hardware platform.

PLC Verification

Several attempts have been made in the past to apply
model checking to software for PLCs. The first approach
goes back to Moon [23], who translated programs given
as Ladder Diagrams into the input language of SMV. This
approach, however, only supports are very limited sub-
set of Ladder Diagrams (namely, Boolean functions) and
does not apply any abstraction, which leads to state ex-
plosion for small problems already. Later, Canet et al. [7]
verified programs written in IL using NUSMV. The draw-
back of their method is that they only support a subset
of IL and do not account for the cyclic scanning mode.
A different approach was followed by Mertke and Frey
[21], who translated IL programs into Petri nets, also not
supporting the complete IL instruction set.

Huuck [16] used CADENCE SMV to verify PLC pro-
grams written as Sequential Function Charts (SFCs).
Since parts of the defined SFC constructs have an ambigu-
ous semantics, they only support a well-defined subset of
the input language, which is described in [3]. In 2007,

Pavlovic et al. [24] described an approach to translate
PLC programs in Statement List — a vendor-specific lan-
guage similar to IL — into the input language of NUSMV.
Their approach, however, is not applicable to programs
with several inputs without manual intervention. On the
other hand, Süflow and Drechsler [32] applied equiva-
lence checking using SAT to the task of PLC verification.
Schlich et al. [30] introduced the concept of abstract sim-
ulation for PLC verification. This approach, which to
a certain degree forms the basis for our work, performs
abstraction without refinement, and thus, often leads to
spurious warnings. None of the existing techniques, how-
ever, embodies an abstraction-refinement loop.

8 Discussion & Future Work

This paper advocates applying a CEGAR approach to
model checking of software for PLCs, which integrates
the peculiarities of the cyclic scanning mode w. r. t. global
and input variables. Whereas the execution of a cycle
heavily depends on combinations of inputs, which — in
case of concrete instantiations — easily leads to state ex-
plosion, a suitable abstraction is automatically derived and
refined in our approach. A unique feature of our method
is the triggering of refinements in case that nondetermin-
istic control flow is encountered, which can then trigger
a global refinement process. This step is required due to
the use of a hardware simulator for state space building,
in contrast to verification efforts based on, say, Boolean
programs [2]. Our CEGAR method proves to be highly
effective as it significantly reduces runtimes required for
model checking, often by orders of magnitudes.

Clearly, this work calls for further investigations of
constraint-solving approaches, and the solver currently in
use could be replaced with a back-end based on SAT or
SMT [19]. Another possible direction for future research
is studying an optimized global refined process, where the
state space is not completely rebuilt. Here, existing work
on lazy abstraction [15] could serve as a starting point.
Further, it is obvious that the domain construction for bit-
and word-level intervals is a direct consequence of the
early works of Cousot and Cousot [10]. We believe that
the effectiveness of this technique can be further improved

8



by integrating (weakly) relational numeric domains into
the refinement process. Octagons [22] or (bitwise) linear
congruences [5, 14, 18] are possible choices for suitable
relational domains. Such a combination of well-studied
domains and the refinement process, however, needs to
be examined in detail.

Acknowledgment

The work of Sebastian Biallas was supported by the DFG.
The work of Jörg Brauer and Stefan Kowalewski was,
in part, supported by the DFG Cluster of Excellence
on Ultra-high Speed Information and Communication
(UMIC), German Research Foundation grant DFG EXC
89. We thank Bastian Schlich for sharing his thoughts
on the ideas described in this paper, and the anonymous
referees for their helpful comments.

References
[1] BALL, T., COOK, B., DAS, S., AND RAJAMANI, S. K. Refin-

ing approximations in software predicate abstraction. In TACAS
(2004), vol. 2988 of LNCS, Springer, pp. 388–403.

[2] BALL, T., AND RAJAMANI, S. K. Bebop: A symbolic model
checker for boolean programs. In SPIN (2000), vol. 1885 of LNCS,
Springer, pp. 113–130.

[3] BAUER, N., AND HUUCK, R. A parameterized semantics for
sequential function charts. In Semantic Foundations Engineering
Design Languages (SFEDL 2002) (2002), pp. 69–83.

[4] BIERE, A., CIMATTI, A., CLARKE, E. M., STRICHMAN, O.,
AND ZHU, Y. Bounded model checking. Advances in Computers
58 (2003), 118–149.

[5] BRAUER, J., KING, A., AND KOWALEWSKI, S. Range analysis
of microcontroller code using bit-level congruences. In FMICS
(2010), vol. 6371 of LNCS, Springer, pp. 82–98.

[6] BRAUER, J., NOLL, T., AND SCHLICH, B. Interval analysis of
microcontroller code using abstract interpretation of hardware and
software. In SCOPES 2010 (2010), ACM.

[7] CANET, G., COUFFIN, S., LESAGE, J.-J., PETIT, A., AND SCH-
NOEBELEN, P. Towards the automatic verification of PLC pro-
grams written in Instruction List. In SMC (2000), vol. 4, IEEE,
pp. 2449–2454.

[8] CLARKE, E. M., GRUMBERG, O., JHA, S., LU, Y., AND VEITH,
H. Counterexample-guided abstraction refinement. In CAV (2000),
vol. 1855 of LNCS, Springer, pp. 154–169.

[9] CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. Model
Checking. The MIT Press, 1999.

[10] COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL (1977), ACM, pp. 238–252.

[11] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,
AND ZADECK, F. K. Effciently computing static single assign-
ment form and the control dependence graph. ACM Trans. Pro-
gram. Lang. Syst. (1991), 451–590.

[12] D’SILVA, V., PURANDARE, M., AND KROENING, D. Approx-
imation refinement for interpolation-based model checking. In
VMCAI (2008), vol. 4905 of LNCS, Springer, pp. 68–82.

[13] GIACOBAZZI, R., AND SCOZZARI, F. Intuitionistic implication
in abstract interpretation. In PLILP (1997), vol. 1292 of LNCS,
Springer, pp. 175–189.

[14] GRANGER, P. Static analysis of linear congruence equalities
among variables of a program. In TAPSOFT 1991 (1991), vol. 493
of LNCS, Springer, pp. 169–192.

[15] HENZINGER, T., JHALA, R., MAJUMDAR, R., AND SUTRE, G.
Lazy abstraction. In POPL (2002), ACM Press, pp. 58–70.

[16] HUUCK, R. Software Verification for Programmable Logic Con-
trollers. Dissertation, University of Kiel, Germany, April 2003.

[17] INTERNATIONAL ELECTROTECHNICAL COMMISSION. IEC
61508: Functional Safety of Electrical, Electronic and Pro-
grammable Electronic Safety-Related Systems. International Elec-
trotechnical Commission, Geneva, Switzerland, 1998.

[18] KING, A., AND SØNDERGAARD, H. Automatic abstraction for
congruences. In VMCAI (2010), vol. 5944 of LNCS, Springer,
pp. 281–293.

[19] KROENING, D., AND STRICHMAN, O. Decision Procedures.
Springer, 2008.

[20] KURSHAN, R. P. Computer-aided verification of coordinating
processes: the automata-theoretic approach. Princeton University
Press, Princeton, NJ, USA, 1994.

[21] MERTKE, T., AND FREY, G. Formal verification of plc-programs
generated from signal interpreted petri nets. In SMC (2001), vol. 4,
IEEE, pp. 2700–2705.

[22] MINÉ, A. The octagon abstract domain. Higher-Order and
Symbolic Computation 19, 1 (2006), 31–100.

[23] MOON, I. Modeling programmable logic controllers for logic
verification. IEEE Control Systems Magazine 14, 2 (1994), 53–59.

[24] PAVLOVIC, O., PINGER, R., AND KOLLMANN, M. Automated
formal verification of plc programms written in IL. In VERIFY
(2007), no. 259 in Workshop Proce., CEUR-WS.org, pp. 152–163.

[25] PLCOPEN TC5. Safety Software Technical Specification, Version
1.0, Part 1: Concepts and Function Blocks. PLCopen, Germany,
2006.

[26] RAZDAN, R., AND SMITH, M. D. A high-performance mi-
croarchitecture with hardware-programmable functional units. In
MICRO (1994), ACM Press, pp. 172–180.

[27] REGEHR, J., AND DUONGSAA, U. Deriving abstract transfer
functions for analyzing embedded software. In LCTES (2006),
ACM, pp. 34–43.

[28] REGEHR, J., AND REID, A. HOIST: A system for automati-
cally deriving static analyzers for embedded systems. In ASPLOS
(2004), ACM, pp. 133–143.

[29] SCHLICH, B. Model Checking of Software for Microcontrollers.
Dissertation, RWTH Aachen University, Germany, June 2008.

[30] SCHLICH, B., BRAUER, J., WERNERUS, J., AND KOWALEWSKI,
S. Direct model checking of PLC programs in IL. In DCDS
(2009). To appear.

[31] SOLIMAN, D., AND FREY, G. Verification and validation of
safety applications based on PLCopen Safety Function Blocks
using Timed Automata in UPPAAL. In DCDS (2009). To appear.

[32] SÜLFLOW, A., AND DRECHSLER, R. Verification of plc programs
using formal proof techniques. In FORMS/FORMAT (2008),
L’Harmattan, pp. 43–50.

9


